Little is known about the impact of attention during motor adaptation tasks on how movements adapted in one context generalize to another. We investigated this by manipulating subjects' attention to… Click to show full abstract
Little is known about the impact of attention during motor adaptation tasks on how movements adapted in one context generalize to another. We investigated this by manipulating subjects' attention to their movements while exposing them to split-belt walking (i.e., legs moving at different speeds), which is known to induce locomotor adaptation. We hypothesized that reducing subjects' attention to their movements by distracting them as participants adapted their walking pattern would facilitate the generalization of recalibrated movements beyond the training environment. We reasoned that awareness of the novel split-belt condition could be used to consciously contextualize movements to that particular situation. To test this hypothesis, young adults adapted their gait on a split-belt treadmill while they observed visual information that either distracted them or made them aware of the belt's speed difference. We assessed adaptation and aftereffects of spatial and temporal gait features known to adapt and generalize differently in different environments. We found that all groups adapted similarly by reaching the same steady state values for all gait parameters at the end of the adaptation period. In contrast, both groups with altered attention to the split-belts environment (distraction and awareness groups) generalized their movements from the treadmill to overground more than controls, who walked without altered attention. This was specifically observed in the generalization of step time (temporal gait feature) which might be less susceptible to online corrections when walking overground. These results suggest that altering attention to one's movements during sensorimotor adaptation facilitates the generalization of movement recalibration.
               
Click one of the above tabs to view related content.