LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymmetrical transfer of adaptation between reaching and tracking: implications for feedforward and feedback processes.

Photo by codypboard from unsplash

Reaching and manual tracking are two very common tasks for studying human sensorimotor processes. Although these motor tasks rely both on feedforward and feedback processes, emphasis is more on feedforward… Click to show full abstract

Reaching and manual tracking are two very common tasks for studying human sensorimotor processes. Although these motor tasks rely both on feedforward and feedback processes, emphasis is more on feedforward processes for reaching, and more on feedback processes for tracking. The extent to which feedforward and feedback processes are interrelated when being updated is not settled yet. Here, using reaching and tracking as proxies, we examined the bidirectional relationship between the update of feedforward and feedback processes. Forty right-handed participants were asked to move a joystick so as to either track a target moving rather unpredictably (pursuit tracking) or to make fast pointing movements toward a static target (center-out reaching task). Visuomotor adaptation was elicited by introducing a 45° rotation between the joystick motion and the cursor motion. Half of the participants adapted to rotation first via reaching movements, and then with pursuit tracking, while the other half performed both tasks in opposite order. Group comparisons revealed a strong asymmetrical transfer of adaptation between tasks. Namely, although nearly complete transfer of adaptation was observed from reaching to tracking, only modest transfer was found from tracking to reaching. A control experiment (N=10) revealed that making target motion fully predictable did not impact the latter finding. One possible interpretation is that the update of feedforward processes contributes directly to feedback processes, but the update of feedback processes engaged in tracking can be performed in isolation. These results suggest that reaching movements are supported by broader (i.e. more universal) mechanisms than tracking ones.

Keywords: feedforward feedback; transfer adaptation; reaching tracking; feedback processes

Journal Title: Journal of neurophysiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.