The significance of the coupling delay, which is the time required for interactions between coupled oscillators, in various oscillatory dynamics has been investigated mathematically for more than three decades, but… Click to show full abstract
The significance of the coupling delay, which is the time required for interactions between coupled oscillators, in various oscillatory dynamics has been investigated mathematically for more than three decades, but its biological significance has been revealed only recently. In the segmentation clock, which regulates the periodic formation of somites in embryos, Hes7 expression oscillates synchronously between neighboring presomitic mesoderm (PSM) cells, and this synchronized oscillation is controlled by Notch signaling-mediated coupling between PSM cells. Recent studies have shown that inappropriate coupling delays dampen and desynchronize Hes7 oscillations, as simulated mathematically, leading to the severe fusion of somites and somite-derived tissues such as the vertebrae and ribs. These results indicate the biological significance of the coupling delay in synchronized Hes7 oscillations in the segmentation clock. The recent development of an in vitro PSM-like system will facilitate the detailed analysis of the coupling delay in synchronized oscillations.
               
Click one of the above tabs to view related content.