Long noncoding RNAs (lncRNAs) influence the progression of almost all human diseases, but the participation of lncRNAs in type 2 diabetes mellitus (T2DM) has not been fully elucidated. The present… Click to show full abstract
Long noncoding RNAs (lncRNAs) influence the progression of almost all human diseases, but the participation of lncRNAs in type 2 diabetes mellitus (T2DM) has not been fully elucidated. The present study aimed to systematically compare the transcriptome profiling of lncRNAs and mRNAs in livers between T2DM patients and controls, to identify key genes associated with T2DM pathogenesis, and to predict the underlying molecular mechanisms. As a result, a total of 1,512 differentially expressed (DE) lncRNAs and 1,923 DE mRNAs were identified through microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that multiple metabolic processes were dysregulated such as small molecule, organic acid, lipid and branched chain amino acid metabolism. Protein-protein interaction network was constructed and 10 hub mRNAs were identified, including EHHADH, ATM, ACOX1, PIK3R1, EGFR, UQCRFS1, HMGCL, UQCRC2, NDUFS3 and F2. RT-qPCR was conducted to verify the validity of microarray results. Then, coding-noncoding co-expression network and competing endogenous RNA (ceRNA) network were analyzed to predict the lncRNA-mRNA and lncRNA-miRNA-mRNA regulatory patterns. Subsequently, 10 key intermediating miRNAs in ceRNA networks with a node degree > 80 were identified, including hsa-miR-5692a, hsa-miR-12136, hsa-miR-5680, hsa-miR-1305, hsa-miR-6833-5p, hsa-miR-7159-5p, hsa-miR-548as-3p, hsa-miR-6873-3p, hsa-miR-1290 and hsa-miR-4768-5p. In conclusion, the present study evaluated the transcriptome profiling of lncRNAs and mRNAs in livers from T2DM patients, with a value for understanding the molecular mechanism of disease pathogenesis and identifying effective biomarkers in clinical diagnosis.
               
Click one of the above tabs to view related content.