LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gene Feature Extraction Based on Nonnegative Dual Graph Regularized Latent Low-Rank Representation

Photo by lureofadventure from unsplash

Aiming at the problem of gene expression profile's high redundancy and heavy noise, a new feature extraction model based on nonnegative dual graph regularized latent low-rank representation (NNDGLLRR) is presented… Click to show full abstract

Aiming at the problem of gene expression profile's high redundancy and heavy noise, a new feature extraction model based on nonnegative dual graph regularized latent low-rank representation (NNDGLLRR) is presented on the basis of latent low-rank representation (Lat-LRR). By introducing dual graph manifold regularized constraint, the NNDGLLRR can keep the internal spatial structure of the original data effectively and improve the final clustering accuracy while segmenting the subspace. The introduction of nonnegative constraints makes the computation with some sparsity, which enhances the robustness of the algorithm. Different from Lat-LRR, a new solution model is adopted to simplify the computational complexity. The experimental results show that the proposed algorithm has good feature extraction performance for the heavy redundancy and noise gene expression profile, which, compared with LRR and Lat-LRR, can achieve better clustering accuracy.

Keywords: rank representation; latent low; low rank; dual graph; feature extraction; gene

Journal Title: BioMed Research International
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.