ARES is a multidimensional parallel discrete ordinates particle transport code with arbitrary order anisotropic scattering. It can be applied to a wide variety of radiation shielding calculations and reactor physics… Click to show full abstract
ARES is a multidimensional parallel discrete ordinates particle transport code with arbitrary order anisotropic scattering. It can be applied to a wide variety of radiation shielding calculations and reactor physics analysis. ARES uses state-of-the-art solution methods to obtain accurate solutions to the linear Boltzmann transport equation. A multigroup discretization is applied in energy. The code allows multiple spatial discretization schemes and solution methodologies. ARES currently provides diamond difference with or without linear-zero flux fixup, theta weighted, directional theta weighted, exponential directional weighted, and linear discontinuous finite element spatial differencing schemes. Discrete ordinates differencing in angle and spherical harmonics expansion of the scattering source are adopted. First collision source method is used to eliminate or mitigate the ray effects. Traditional source iteration and Krylov iterative method preconditioned with diffusion synthetic acceleration are applied to solve the linear system of equations. ARES uses the Koch-Baker-Alcouffe parallel sweep algorithm to obtain high parallel efficiency. Verification and validation for the ARES transport code system have been done by lots of benchmarks. In this paper, ARES solutions to the HBR-2 benchmark and C5G7 benchmarks are in excellent agreement with published results. Numerical results are presented which demonstrate the accuracy and efficiency of these methods.
               
Click one of the above tabs to view related content.