LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Platinum-Based Drugs Differentially Affect the Ultrastructure of Breast Cancer Cell Types

Photo from wikipedia

Breast cancer (BC) is the most common cause of cancer-related death worldwide. Although platinum-based drugs (PBDs) are effective anticancer agents, responsive patients eventually become resistant. While resistance of some cancers… Click to show full abstract

Breast cancer (BC) is the most common cause of cancer-related death worldwide. Although platinum-based drugs (PBDs) are effective anticancer agents, responsive patients eventually become resistant. While resistance of some cancers to PBDs has been explored, the cellular responses of BC cells are not studied yet. Therefore, we aim to assess the differential effects of PBDs on BC ultrastructure. Three representative cells were treated with different concentrations and timing of Cisplatin, Carboplatin, and Oxaliplatin. Changes on cell surface and ultrastructure were detected by scanning (SEM) and transmission electron microscope (TEM). In SEM, control cells were semiflattened containing microvilli with extending lamellipodia while treated ones were round with irregular surface and several pores, indicating drug entry. Prolonged treatment resembled distinct apoptotic features such as shrinkage, membrane blebs, and narrowing of lamellipodia with blunt microvilli. TEM detected PBDs' deposits that scattered among cellular organelles inducing structural distortion, lumen swelling, chromatin condensation, and nuclear fragmentation. Deposits were attracted to fat droplets, explained by drug hydrophobic properties, while later they were located close to cell membrane, suggesting drug efflux. Phagosomes with destructed organelles and deposits were detected as defending mechanism. Understanding BC cells response to PBDs might provide new insight for an effective treatment.

Keywords: platinum based; breast cancer; cancer; cell; based drugs

Journal Title: BioMed Research International
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.