LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Active Fragment of Veronica ciliata Fisch. Attenuates t-BHP-Induced Oxidative Stress Injury in HepG2 Cells through Antioxidant and Antiapoptosis Activities

Photo by nci from unsplash

Excessive amounts of reactive oxygen species (ROS) in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess… Click to show full abstract

Excessive amounts of reactive oxygen species (ROS) in the body are a key factor in the development of hepatopathies such as hepatitis. The aim of this study was to assess the antioxidation effect in vitro and hepatoprotective activity of the active fragment of Veronica ciliata Fisch. (VCAF). Antioxidant assays (DPPH, superoxide, and hydroxyl radicals scavenging) were conducted, and hepatoprotective effects through the application of tert-butyl hydroperoxide- (t-BHP-) induced oxidative stress injury in HepG2 cells were evaluated. VCAF had high phenolic and flavonoid contents and strong antioxidant activity. From the perspective of hepatoprotection, VCAF exhibited a significant protective effect on t-BHP-induced HepG2 cell injury, as indicated by reductions in cytotoxicity and the levels of ROS, 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyls. Further study demonstrated that VCAF attenuated the apoptosis of t-BHP-treated HepG2 cells by suppressing the activation of caspase-3 and caspase-8. Moreover, it significantly decreased the levels of ALT and AST, increased the activities of acetyl cholinesterase (AChE), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and increased total antioxidative capability (T-AOC). Collectively, we concluded that VCAF may be a considerable candidate for protecting against liver injury owing to its excellent antioxidant and antiapoptosis properties.

Keywords: fragment veronica; hepg2 cells; bhp induced; active fragment; injury

Journal Title: Oxidative Medicine and Cellular Longevity
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.