LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Free Radical Scavenging Potency of Dihydroxybenzoic Acids

Photo by miguelherc96 from unsplash

In order to evaluate the free radical scavenging potency of dihydroxybenzoic acids (DHBAs) the Density Functional Theory (DFT) was used. The M05-2X/6-311++G(d,p) and B3LYP-D2/6-311++G(d,p) theoretical models were applied. Three possible… Click to show full abstract

In order to evaluate the free radical scavenging potency of dihydroxybenzoic acids (DHBAs) the Density Functional Theory (DFT) was used. The M05-2X/6-311++G(d,p) and B3LYP-D2/6-311++G(d,p) theoretical models were applied. Three possible antioxidant mechanisms were examined: hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms. All of these mechanisms have been studied in nonpolar (benzene and pentylethanoate) and polar solvents (water) using an implicit solvation model (SMD). The following thermodynamic quantities related to these mechanisms were calculated: bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA). The obtained results indicated the HAT mechanism as the most favourable reaction pathway for antioxidative action of DHBAs in benzene. On the other hand, SPLET is indicated as predominant reaction mechanism in polar solvent. The SET-PT mechanism was not favourable reaction path for antioxidative action in any of the solvents under investigation.

Keywords: potency dihydroxybenzoic; free radical; radical scavenging; dihydroxybenzoic acids; scavenging potency

Journal Title: Journal of Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.