LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Flexible Load Control Strategy for Distribution Network to Reduce the Line Losses and to Eliminate the Transmission Congestion

Photo from wikipedia

There are many uncertain factors in the modern distribution network, including the access of renewable energy sources and the heavy load level. The existence of these factors has brought challenges… Click to show full abstract

There are many uncertain factors in the modern distribution network, including the access of renewable energy sources and the heavy load level. The existence of these factors has brought challenges to the stability of the power distribution network, as well as increasing the risk of exceeding transmission capacity of distribution lines. The appearance of flexible load control technology provides a new idea to solve the above problems. Air conditioners (ACs) account for a great proportion of all loads. In this paper, the model of dispatching AC loads in the regional power grid is constructed, and the direct load control (DLC) method is adopted to reduce the load of ACs. An improved tabu search technique is proposed to solve the problem of network dispatch in distribution systems in order to reduce the resistive line losses and to eliminate the transmission congestion in lines under normal operating conditions. The optimal node solution is obtained to find the best location and reduction capacity of ACs for load control. To demonstrate the validity and effectiveness of the proposed method, a test system is studied. The numerical results are also given in this article, which reveal that the proposed method is promising.

Keywords: distribution network; load; distribution; load control

Journal Title: Mathematical Problems in Engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.