LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully Automated Robust System to Detect Retinal Edema, Central Serous Chorioretinopathy, and Age Related Macular Degeneration from Optical Coherence Tomography Images

Photo from wikipedia

Maculopathy is the excessive damage to macula that leads to blindness. It mostly occurs due to retinal edema (RE), central serous chorioretinopathy (CSCR), or age related macular degeneration (ARMD). Optical… Click to show full abstract

Maculopathy is the excessive damage to macula that leads to blindness. It mostly occurs due to retinal edema (RE), central serous chorioretinopathy (CSCR), or age related macular degeneration (ARMD). Optical coherence tomography (OCT) imaging is the latest eye testing technique that can detect these syndromes in early stages. Many researchers have used OCT images to detect retinal abnormalities. However, to the best of our knowledge, no research that presents a fully automated system to detect all of these macular syndromes is reported. This paper presents the world's first ever decision support system to automatically detect RE, CSCR, and ARMD retinal pathologies and healthy retina from OCT images. The automated disease diagnosis in our proposed system is based on multilayered support vector machines (SVM) classifier trained on 40 labeled OCT scans (10 healthy, 10 RE, 10 CSCR, and 10 ARMD). After training, SVM forms an accurate decision about the type of retinal pathology using 9 extracted features. We have tested our proposed system on 2819 OCT scans (1437 healthy, 640 RE, and 742 CSCR) of 502 patients from two different datasets and our proposed system correctly diagnosed 2817/2819 subjects with the accuracy, sensitivity, and specificity ratings of 99.92%, 100%, and 99.86%, respectively.

Keywords: system; age related; edema central; central serous; serous chorioretinopathy; retinal edema

Journal Title: BioMed Research International
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.