Let be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space . Let be maximal monotone, be bounded and of type and be compact with… Click to show full abstract
Let be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space . Let be maximal monotone, be bounded and of type and be compact with such that lies in (i.e., there exist and such that for all ). A new topological degree theory is developed for operators of the type . The theory is essential because no degree theory and/or existence result is available to address solvability of operator inclusions involving operators of the type , where is not defined everywhere. Consequently, new existence theorems are provided. The existence theorem due to Asfaw and Kartsatos is improved. The theory is applied to prove existence of weak solution (s) for a nonlinear parabolic problem in appropriate Sobolev spaces.
               
Click one of the above tabs to view related content.