A novel evolutionary extreme learning machine (ELM) based on improved quantum-behaved particle swarm optimization (IQPSO) for radar target classification is presented in this paper. Quantum-behaved particle swarm optimization (QPSO) has… Click to show full abstract
A novel evolutionary extreme learning machine (ELM) based on improved quantum-behaved particle swarm optimization (IQPSO) for radar target classification is presented in this paper. Quantum-behaved particle swarm optimization (QPSO) has been used in ELM to solve the problem that ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. But the method for calculating the characteristic length of Delta potential well of QPSO may reduce the global search ability of the algorithm. To solve this issue, a new method to calculate the characteristic length of Delta potential well is proposed in this paper. Experimental results based on the benchmark functions validate the better performance of IQPSO against QPSO in most cases. The novel algorithm is also evaluated by using real-world datasets and radar data; the experimental results indicate that the proposed algorithm is more effective than BP, SVM, ELM, QPSO-ELM, and so on, in terms of real-time performance and accuracy.
               
Click one of the above tabs to view related content.