LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulations and Experiments on Vibration Control of Aerospace Thin-Walled Parts via Preload

Photo from wikipedia

Thin-walled parts primarily comprise the entire piece of rough machining, and the material removal rate can surpass 95%. Numerous components with thin-walled structures are preferred in the aerospace industry for… Click to show full abstract

Thin-walled parts primarily comprise the entire piece of rough machining, and the material removal rate can surpass 95%. Numerous components with thin-walled structures are preferred in the aerospace industry for their light weight, high strength, and other advantages. In aerospace thin-walled workpiece machining processes and practical applications, they are excited by the vibration. The preload changing the modal stiffness of the part is found and this change causes continuous changes in the natural frequency. Researching on the influence of pretightening force on dynamic characteristics of thin-walled components is highly significant for controlling vibration. In this study, the typical aviation thin-walled part is the research object. Finite element numerical simulation and experimental verification are employed to analyze the dynamic characteristics of 7075 aluminum alloy thin-walled plates under different preloads for exploring the relationship between natural frequency and preload. The relationship is validated by comparative results. Both the simulation and experimental results show that the natural frequencies of plates increase following the augmentation of the preload. Thus, this research introduces the method where vibration of aerospace thin-walled parts is reduced by preload. For practical engineering application, a program showing the relationship between natural frequency and preload is written using Visual Basic language.

Keywords: aerospace thin; vibration; walled parts; thin walled; preload; thin

Journal Title: Shock and Vibration
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.