LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Synthesis, Microstructure, and Gas Sensing Properties of NdCoO3 Nanoparticles

Photo by rockstaar_ from unsplash

NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water… Click to show full abstract

NdCoO3 nanoparticles were successfully synthesized by a simple, inexpensive, and reproducible solution method for gas sensing applications. Cobalt nitrate, neodymium nitrate, and ethylenediamine were used as precursors and distilled water as solvent. The solvent was evaporated later by means of noncontinuous microwave radiation at 290 W. The obtained precursor powders were calcined at 200, 500, 600, and 700°C in a standard atmosphere. The oxide crystallized in an orthorhombic crystal system with space group Pnma (62) and cell parameters  A,  A, and  A. The nanoparticles showed a diffusional growth to form a network-like structure and porous adsorption configuration. Pellets prepared from NdCoO3 were tested as gas sensors in atmospheres of carbon monoxide and propane at different temperatures. The oxide nanoparticles were clearly sensitive to changes in gas concentrations (0–300 ppm). The sensitivity increased with increasing concentration of the gases and operating temperatures (25, 100, 200, and 300°C).

Keywords: facile synthesis; microstructure gas; ndcoo3 nanoparticles; gas; synthesis microstructure; gas sensing

Journal Title: Journal of Nanomaterials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.