LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Determination of Six Low Molecular Carbonyl Compounds in Tobacco Smoke by the APCI-MS/MS Coupled to Data Mining

Photo from wikipedia

A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) and data mining. The… Click to show full abstract

A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) and data mining. The ionization was carried out in positive mode, and six low molecular carbonyl compounds of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde were analyzed by both full scan mode and daughter scan mode. To overcome the quantitative difficulties from isomer of acetone/propionaldehyde and butanone/butyraldehyde, the quantitation procedure was performed with the characteristic ion of [CH3O]+ under CID energy of 5 and 15 eV. Subsequently, the established method was successfully applied to analysis of six low molecular carbonyl compounds in tobacco smoke with analytical period less than four minutes. The contents of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde for a cigarette were about 63 ± 5.8, 325 ± 82, 55 ± 9.7, 11 ± 1.4, 67 ± 5.9, and 12 ± 1.8 μg/cig, respectively. The experimental results indicated that the established method had the potential application in rapid determination of low molecular carbonyl compounds.

Keywords: low molecular; molecular carbonyl; carbonyl compounds; rapid determination; six low

Journal Title: Journal of Analytical Methods in Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.