LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Approach of Impulsive Signal Extraction for Early Fault Detection of Rolling Element Bearing

Photo from wikipedia

The fault signals of rolling element bearing are often characterized by the presence of periodic impulses, which are modulated high-frequency harmonic components. The features of early fault in rolling bearing… Click to show full abstract

The fault signals of rolling element bearing are often characterized by the presence of periodic impulses, which are modulated high-frequency harmonic components. The features of early fault in rolling bearing are very weak, which are often masked by background noise. The impulsiveness of the vibration signal has affected the identification of characteristic frequency for the early fault detection of the bearing. In this paper, a novel approach based on morphological operators is presented for impulsive signal extraction of early fault in rolling element bearing. The combination Top-Hat (CTH) is proposed to extract the impulsive signal and enhance the impulsiveness of the bearing fault signal, and the envelope analysis is applied to reveal the fault-related signatures. The impulsive extraction performance of the proposed CTH is compared with that of finite impulse response filter (FIR) by analyzing the simulated bearing fault signals, and the result indicates that the CTH is more effective in extracting impulsive signals. The method is evaluated using real fault signals from defective bearings with early rolling element fault and early fault located on the outer race. The results show that the proposed method is able to enhance the impulsiveness of early bearing fault signals.

Keywords: fault; element bearing; early fault; impulsive signal; rolling element

Journal Title: Shock and Vibration
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.