By utilizing kernel functions, support vector machines (SVMs) successfully solve the linearly inseparable problems. Subsequently, its applicable areas have been greatly extended. Using multiple kernels (MKs) to improve the SVM… Click to show full abstract
By utilizing kernel functions, support vector machines (SVMs) successfully solve the linearly inseparable problems. Subsequently, its applicable areas have been greatly extended. Using multiple kernels (MKs) to improve the SVM classification accuracy has been a hot topic in the SVM research society for several years. However, most MK learning (MKL) methods employ L1-norm constraint on the kernel combination weights, which forms a sparse yet nonsmooth solution for the kernel weights. Alternatively, the Lp-norm constraint on the kernel weights keeps all information in the base kernels. Nonetheless, the solution of Lp-norm constraint MKL is nonsparse and sensitive to the noise. Recently, some scholars presented an efficient sparse generalized MKL (L1- and L2-norms based GMKL) method, in which L1 L2 established an elastic constraint on the kernel weights. In this paper, we further extend the GMKL to a more generalized MKL method based on the p-norm, by joining L1- and Lp-norms. Consequently, the L1- and L2-norms based GMKL is a special case in our method when p = 2. Experiments demonstrated that our L1- and Lp-norms based MKL offers a higher accuracy than the L1- and L2-norms based GMKL in the classification, while keeping the properties of the L1- and L2-norms based on GMKL.
               
Click one of the above tabs to view related content.