LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Nonlinear Robust Control for TCSC in Power System

Photo by charlesdeluvio from unsplash

This paper proposes an enhanced robust control method, which is for thyristor controlled series compensator (TCSC) in presences of time-delay nonlinearity, uncertain parameter, and external disturbances. Unlike conventional adaptive control… Click to show full abstract

This paper proposes an enhanced robust control method, which is for thyristor controlled series compensator (TCSC) in presences of time-delay nonlinearity, uncertain parameter, and external disturbances. Unlike conventional adaptive control methods, the uncertain parameter is estimated by using system immersion and manifold invariant (I&I) adaptive control. Thus, the oscillation of states caused by the coupling between parameter estimator and system states can be avoided. In addition, in order to overcome the influences of time-delay nonlinearity and external disturbances, backstepping sliding mode control is adopted to design control law recursively. Furthermore, robustness of TCSC control subsystem is achievable provided that dissipation inequality is satisfied in each step. Effectiveness and efficiencies of the proposed control method are verified by simulations. Compared with adaptive backstepping sliding mode control and adaptive backstepping control, the time of reaching steady state is shortened by at least 11% and the oscillation amplitudes of transient responses are reduced by at most 50%.

Keywords: system; robust control; control; enhanced nonlinear; nonlinear robust; control tcsc

Journal Title: Mathematical Problems in Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.