LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Behaviour and Failure of Steel Columns Subjected to Blast Loads: Numerical Study and Analytical Approach

Photo from wikipedia

The main objective of this study is the numerical simulation of the behaviour and failure patterns of steel columns under blast loads using the dynamic finite element package ABAQUS/Explicit. A… Click to show full abstract

The main objective of this study is the numerical simulation of the behaviour and failure patterns of steel columns under blast loads using the dynamic finite element package ABAQUS/Explicit. A numerical model is suggested and validated against published experimental tests on full-scale wide-flange steel columns subjected to dynamic blast loads under constant axial compressive force. Afterwards, the validated model is used to investigate the effect of important parameters on the behaviour and failure patterns of steel columns under blast pressure through an extensive parametric study. The parameters include the blast impulse, the blast energy, the blast load, the blast duration, the column boundary condition, the column slenderness ratio, and the blast direction. The conclusions extracted from this parametric study may be used to develop a thorough understanding of the behaviour and failure of steel columns subjected to blast load which, in turn, could lead to a more accurate practical design procedure. The study also presents derivations and validations of a proposed analytical approach to calculate the critical blast impulse at which a steel column losses its global stability. Comparison between the critical impulse-axial force curves obtained from the proposed equation and that extracted from numerical simulations indicates the validity and feasibility of the proposed equation.

Keywords: behaviour failure; study; blast loads; steel columns; steel

Journal Title: Advances in Materials Science and Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.