LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison between Different Extraction Methods for Determination of Primary Aromatic Amines in Food Simulant

Photo from wikipedia

The primary aromatic amines (PAAs) are food contaminants which may exist in packaged food. Polyurethane (PU) adhesives which are used in flexible packaging are the main source of PAAs. It… Click to show full abstract

The primary aromatic amines (PAAs) are food contaminants which may exist in packaged food. Polyurethane (PU) adhesives which are used in flexible packaging are the main source of PAAs. It is the unreacted diisocyanates which in fact migrate to foodstuff and then hydrolyze to PAAs. These PAAs include toluenediamines (TDAs) and methylenedianilines (MDAs), and the selected PAAs were 2,4-TDA, 2,6-TDA, 4,4′-MDA, 2,4′-MDA, and 2,2′-MDA. PAAs have genotoxic, carcinogenic, and allergenic effects. In this study, extraction methods were applied on a 3% acetic acid as food simulant which was spiked with the PAAs under study. Extraction methods were liquid-liquid extraction (LLE), dispersive liquid-liquid microextraction (DLLME), and solid-phase extraction (SPE) with C18 ec (octadecyl), HR-P (styrene/divinylbenzene), and SCX (strong cationic exchange) cartridges. Extracted samples were detected and analyzed by HPLC-UV. In comparison between methods, recovery rate of SCX cartridge showed the best adsorption, up to 91% for polar PAAs (TDAs and MDAs). The interested PAAs are polar and relatively soluble in water, so a cartridge with cationic exchange properties has the best absorption and consequently the best recoveries.

Keywords: extraction; extraction methods; paas; aromatic amines; primary aromatic; food

Journal Title: Journal of Analytical Methods in Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.