This paper aims to create a prediction model for car body vibration acceleration that is reliable, effective, and close to real-world conditions. Therefore, a huge amount of data on railway… Click to show full abstract
This paper aims to create a prediction model for car body vibration acceleration that is reliable, effective, and close to real-world conditions. Therefore, a huge amount of data on railway parameters were collected by multiple sensors, and different correlation coefficients were selected to screen out the parameters closely correlated to car body vibration acceleration. Taking the selected parameters and previous car body vibration acceleration as the inputs, a prediction model for car body vibration acceleration was established based on several training algorithms and neural network structures. Then, the model was successfully applied to predict the car body vibration acceleration of test datasets on different segments of the same railway. The results show that the proposed method overcomes the complexity and uncertainty of the multiparameter coupling analysis in traditional theoretical models. The research findings boast a great potential for application.
               
Click one of the above tabs to view related content.