LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dedolomitization Potential of Fluids from Gypsum-to-Anhydrite Conversion: Mass Balance Constraints from the Late Permian Zechstein-2-Carbonates in NW Germany

Photo by stevep4 from unsplash

The Zechstein-2-Carbonates represent one of the most prolific hydrocarbon systems of Central Europe. Carbonate reservoir quality is primarily controlled by mineralogy, with dolomite representing moderate-to-good porosities and calcite commonly representing… Click to show full abstract

The Zechstein-2-Carbonates represent one of the most prolific hydrocarbon systems of Central Europe. Carbonate reservoir quality is primarily controlled by mineralogy, with dolomite representing moderate-to-good porosities and calcite commonly representing low porosities. Current models suggest that this calcite is the result of a basin-wide phase of dedolomitization. The calcium (Ca) source for the dedolomites is thought to be derived from the fluids liberated during gypsum-to-anhydrite conversion. We present an easy-to-use and generally applicable template to estimate the dedolomitization potential of these fluids. Depending on reaction stoichiometry, salinity, and temperature, we estimate that between 0−3 m3 and 0−3 m3 of calcite may replace dolomite for each m3 of anhydrite created. Within the constraints dictated by the environment of the late Permian Zechstein basin, we estimate that about 0−3 m3 of dedolomite is created for each m3 of anhydrite. Mass balance constraints indicate that fluids derived from gypsum-to-anhydrite conversion account for less than 1% of the observed dedolomite in most of the studied industry wells from northern Germany.

Keywords: zechstein carbonates; gypsum anhydrite; dedolomitization; anhydrite conversion

Journal Title: Geofluids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.