LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Calculation of Tangent Modulus of Soils under Different Stress Paths

Photo from wikipedia

During excavation of foundation pit, soils of different sites may undergo different unloading paths. This study focuses on the tangent modulus of soil under different stress paths and provides theoretical… Click to show full abstract

During excavation of foundation pit, soils of different sites may undergo different unloading paths. This study focuses on the tangent modulus of soil under different stress paths and provides theoretical basis for the deformation calculation of soil. In this paper, conventional triaxial compression test and consolidation unloading test were conducted with mucky soil and silty clay to obtain the deformation characteristics of soils under different stress paths. Experiment results show that the soil samples exhibit distinct stress-strain characteristics under different stress paths, but they all show nonlinearity. The initial tangent modulus increases as the consolidation confining pressure intensifies. Then, based on the test data, the power function relationship between initial tangent modulus and confining pressure under unloading was verified. Simultaneously, a hyperbola function to express stress-strain relation of soils under the consolidation unloading condition was proposed and proved. Finally, the formulas of the tangent modulus under consolidation unloading were established referring to the derivation of that in Duncan–Chang model. The theoretical calculation results agree well with the test results. It can expand the use of the Duncan–Chang model and improve its application to engineering practice.

Keywords: different stress; soils different; calculation; stress paths; tangent modulus

Journal Title: Mathematical Problems in Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.