LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear Biomechanical Characteristics of the Schneiderian Membrane: Experimental Study and Numerical Modeling

Photo by aaronburden from unsplash

Objective The aim of this study is to quantify the nonlinear mechanical behavior of the Schneiderian membrane. Methods Thirty cadaveric maxillary sinus membrane specimens were divided into the elongation testing… Click to show full abstract

Objective The aim of this study is to quantify the nonlinear mechanical behavior of the Schneiderian membrane. Methods Thirty cadaveric maxillary sinus membrane specimens were divided into the elongation testing group and the perforation testing group. Mechanical experimental measurements were taken via ex vivo experiments. Theoretical curves were compared with experimental findings to assess the effectiveness of the nonlinear mechanical properties. The FE model with nonlinear mechanical properties was used to simulate the detachment of the Schneiderian membrane under loading. Results The mean thickness of the membrane samples was 1.005 mm. The mean tensile strength obtained by testing was 6.81 N/mm2. In membrane perforation testing, the mean tensile strength and the linear elastic modulus were significantly higher than those in membrane elongation testing (P < 0.05). The mean adhesion force between the Schneiderian membrane and the bone was 0.052 N/mm. By FE modeling, the squared correlation coefficients of theoretical stress-strain curves for the nonlinear and linear models were 0.99065 and 0.94656 compared with the experimental data. Conclusions The biomechanical properties of the Schneiderian membrane were implemented into the FE model, which was applied to simulate the mechanical responses of the Schneiderian membrane in sinus floor elevation.

Keywords: schneiderian membrane; modeling; study; nonlinear mechanical; membrane; experimental

Journal Title: BioMed Research International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.