LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Finite-Time H-Infinity Control with Transients for Dynamic Positioning Ship Subject to Input Delay

This paper presents the problem of robust finite-time control with transients for ocean surface vessels equipped with dynamic positioning (DP) system in presence of input delay. The main objective of… Click to show full abstract

This paper presents the problem of robust finite-time control with transients for ocean surface vessels equipped with dynamic positioning (DP) system in presence of input delay. The main objective of this work is to design a finite-time state feedback controller, which ensures that all states of ship do not exceed a given threshold over a fixed time interval, with better robustness and transient performance subject to time-varying disturbance. Based on a novel augmented Lyapunov-Krasovskii-like function (LKLF) with triple integral terms and a method combining the Wirtinger inequality and reciprocally convex approach, a less conservative result is derived. In particular, an performance index with nonzero initial condition is introduced to attenuate the overconservatism caused by the assumption of zero initial condition and enhance the transient performance of ship subject to external disturbance. More precisely, the controller gain matrix for the DP system can be achieved by solving the linear matrix inequalities (LMIs), which can be easily facilitated by using some standard numerical packages. Finally, a numerical simulation for a ship is proposed to verify the effectiveness and less conservatism of the controller we designed.

Keywords: finite time; control transients; time; ship; dynamic positioning; robust finite

Journal Title: Mathematical Problems in Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.