The leapfrogging pulses in two unbalanced electrical nonlinear transmission lines (NLTLs) with capacitive couplings are investigated for efficient modulation of a pulse train. Due to the resonant interactions, the nonlinear… Click to show full abstract
The leapfrogging pulses in two unbalanced electrical nonlinear transmission lines (NLTLs) with capacitive couplings are investigated for efficient modulation of a pulse train. Due to the resonant interactions, the nonlinear solitary waves in the NLTLs exhibit complementary behaviors of amplitudes and phases called leapfrogging. For maximizing resonance, both solitary waves should have a common average velocity. Sharing the common velocity, the characteristic impedance can still be freely designed for two coupled solitary waves. In this study, we characterize the leapfrogging pulses developed in unbalanced NLTLs having distinct characteristic impedance. Through the soliton perturbation theory and numerical time-domain calculations, it is found that both the leapfrogging frequency and the voltage variations of pulse amplitudes increase as the difference in the characteristic impedance becomes large. These properties can improve the on/off ratio of modulated pulse train.
               
Click one of the above tabs to view related content.