LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of Thermomechanical Properties of an Al-Zn-Based Composite Reinforced with Dodecaboride Particles

Photo from wikipedia

The effect of the addition of particles to gravity cast Al-Zn alloys was studied and related to the composite deformation at high temperature. The characterization techniques of choice were thermomechanical… Click to show full abstract

The effect of the addition of particles to gravity cast Al-Zn alloys was studied and related to the composite deformation at high temperature. The characterization techniques of choice were thermomechanical analysis (TMA), Brinell hardness (HB), and optical microscopy. After homogenization treatment, Al-5 wt.% Zn and Al-10 wt.% Zn with 0, 2.08, 4.16 wt.% B samples were quenched in ice water and tested using a thermomechanical analyzer at different temperatures. It was found that after TMA treatment, Brinell hardness of the composites increased for higher concentrations of zinc and particles, as expected. Such increment was not, however, uniform for all samples at higher temperature levels, suggesting a nonequilibrium interaction between reinforcing particles and zinc. This was further corroborated by TMA experiments, which revealed that for samples with Al-10 wt.% Zn, high temperature deformation augmented as more particles were present. After high temperature treatment, precipitation of zinc-rich allotriomorphs was observed by the optical microscopy performed on the samples near or on the aluminum grain boundaries, which discarded the potential effect of fine precipitation due to aging.

Keywords: properties based; temperature; microscopy; high temperature; thermomechanical properties; study thermomechanical

Journal Title: Advances in Materials Science and Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.