LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and Characterization of Carbon-Based Nanofluids through the Water Vortex Trap Method

Photo from wikipedia

This study designed an efficient one-step method for synthesizing carbon-based nanofluids (CBNFs). The method employs the vortex trap method (VTM) and an oxygen-acetylene flame, serving as a carbon source, in… Click to show full abstract

This study designed an efficient one-step method for synthesizing carbon-based nanofluids (CBNFs). The method employs the vortex trap method (VTM) and an oxygen-acetylene flame, serving as a carbon source, in a manufacturing system of the VTM (MSVTM). The flow rate ratio of O2 and C2H2 was adjusted to form suitable combustion conditions for the reduced flame. Four flow rate ratios of O2 and C2H2 were used: 1.5 : 2.5 (V1), 1.0 : 2.5 (V2), 0.5 : 2.5 (V3), and 0 : 2.5 (V4). The morphology, structure, particle size, stability, and basic physicochemical characteristics of the obtained carbon-based nanomaterials (CBNMs) and CBNFs were investigated using transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, Raman spectrometry, ultraviolet–visible–near-infrared spectrophotometry, and a particle size-zeta potential analyzer. The static positioning method was utilized to evaluate the stability of the CBNFs with added EP dispersants. The evaluation results revealed the morphologies, compositions, and concentrations of the CBNFs obtained using various process parameters, and the relation between processing time and production rate was determined. Among the CBNMs synthesized, those obtained using the V4-0 flow rate ratio had the highest stability when no EP dispersant was added. Moreover, the maximum enhancement ratios of the viscosity and thermal conductivity were also obtained for V4-0: 4.65% and 1.29%, respectively. Different types and concentrations of dispersants should be considered in future research to enhance the stability of CBNFs for further application.

Keywords: carbon; microscopy; vortex trap; based nanofluids; method; carbon based

Journal Title: Journal of Nanomaterials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.