LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Resolution Improvement of Radar Target Identification with Filtering Antenna Effects

Photo by ggfujyoj from unsplash

An investigation on the improvement of the resolution of a radar target identification system is presented in this paper. Degradation of resolution is mainly due to influence factors associated with… Click to show full abstract

An investigation on the improvement of the resolution of a radar target identification system is presented in this paper. Degradation of resolution is mainly due to influence factors associated with antennas, including the strong coupling between transmitting and receiving antennas and the variation in the antenna response. A filtering technique was therefore introduced to mitigate the underlying problem. In the technique, the antenna effects were filtered out of the total response backscattered from the objects in the radar target identification system. The short-time matrix pencil method (STMPM) was then employed to extract the poles from the backscattered response in order to identify the object. Simulation and experimentation examples are illustrated to confirm the improvement of the resolution by filtering the antenna effects. The simulation and experimentation were divided into several categories, that is, different antennas and differently shaped objects, in order to validate the advantage of filtering the antenna effects. They were setup in order to demonstrate that the poles obtained from performing the STMPM without the filtering technique were mainly because of the antenna rather than the object’s characteristic. The results showed that the resolution of the identification was significantly increased when performing pole extraction and filtering the antenna effects.

Keywords: resolution; radar target; target identification; filtering antenna; antenna effects

Journal Title: International Journal of Antennas and Propagation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.