Illumination-invariant method for computing local feature points and descriptors, referred to as LUminance Invariant Feature Transform (LUIFT), is proposed. The method helps us to extract the most significant local features… Click to show full abstract
Illumination-invariant method for computing local feature points and descriptors, referred to as LUminance Invariant Feature Transform (LUIFT), is proposed. The method helps us to extract the most significant local features in images degraded by nonuniform illumination, geometric distortions, and heavy scene noise. The proposed method utilizes image phase information rather than intensity variations, as most of the state-of-the-art descriptors. Thus, the proposed method is robust to nonuniform illuminations and noise degradations. In this work, we first use the monogenic scale-space framework to compute the local phase, orientation, energy, and phase congruency from the image at different scales. Then, a modified Harris corner detector is applied to compute the feature points of the image using the monogenic signal components. The final descriptor is created from the histograms of oriented gradients of phase congruency. Computer simulation results show that the proposed method yields a superior feature detection and matching performance under illumination change, noise degradation, and slight geometric distortions comparing with that of the state-of-the-art descriptors.
               
Click one of the above tabs to view related content.