LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiochemical Restrictions of Mineral Zoning of Sediment-Hosted Stratiform Copper Deposit in SW China

Photo from wikipedia

The Chuxiong basin, located in southwest China, is well known as a mineralization area of red-bed type copper deposits in China. These deposits are characterized by mineral zoning, which is… Click to show full abstract

The Chuxiong basin, located in southwest China, is well known as a mineralization area of red-bed type copper deposits in China. These deposits are characterized by mineral zoning, which is especially true for the Dayao deposits. The mineral zoning is consistent for both horizontal and vertical zoning; from the base (center) of the ore body to the top (outermost), the mineral zones are from hematite, chalcocite, chalcocite + bornite, and bornite + chalcopyrite to pyrite. We studied the mineral zoning in detail using a thermodynamic phase diagram method, such as - , pH- , and pH-Eh, and discussed the constraints on the order of the minerals precipitation under different physiochemical conditions. It is indicated that changes in temperature have little effect on pH and Eh in the formation of minerals. S2− is stable only below 473 K, and the forming temperature of chalcocite must be below 473 K. In this paper, we also explain the mineral zoning formation mechanism and propose that the main controlling factor of mineral zoning is pH. Because this mineral zoning is widespread in sediment-hosted deposits, studies on this mechanism can considerably promote better understanding of the genesis of ore deposits in order to guide the exploration.

Keywords: sediment hosted; mineral zoning; copper; restrictions mineral; physiochemical restrictions

Journal Title: Geofluids
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.