It is important to distinguish the dominant mechanism of seabed acoustic scattering for the quantitative inversion of seabed parameters. An identification scheme is proposed based on Bayesian inversion with the… Click to show full abstract
It is important to distinguish the dominant mechanism of seabed acoustic scattering for the quantitative inversion of seabed parameters. An identification scheme is proposed based on Bayesian inversion with the relative entropy used to estimate dominant acoustic backscatter mechanism. DiffeRential Evolution Adaptive Metropolis is used to obtain samples from posterior probability density in Bayesian inversion. Three mechanisms for seabed scattering are considered: scattering from a rough water-seabed interface, scattering from volume heterogeneities, and mixed scattering from both interface roughness and volume heterogeneities. Roughness scattering and volume scattering are modelled based on Fluid Theories using Small-Slope Approximation and Small-Perturbation Fluid Approximation, respectively. The identification scheme is applied to three simulated observation data sets. The results indicate that the scheme is promising and appears capable of distinguishing sediment volume from interface roughness scattering and can correctly identify the dominant acoustic backscatter mechanism.
               
Click one of the above tabs to view related content.