We first present a generalization of ω⁎-Gâteaux differentiability theorems of Lipschitz mappings from open sets to those closed convex sets admitting nonsupport points and then show that every nonempty bounded… Click to show full abstract
We first present a generalization of ω⁎-Gâteaux differentiability theorems of Lipschitz mappings from open sets to those closed convex sets admitting nonsupport points and then show that every nonempty bounded closed convex subset of a Banach space has the fixed point property for isometries if it Lipschitz embeds into a super reflexive space. With the application of Baudier-Lancien-Schlumprecht’s theorem, we finally show that every nonempty bounded closed convex subset of a Banach space has the fixed point property for continuous affine mappings if it uniformly embeds into the Tsirelson space T⁎.
               
Click one of the above tabs to view related content.