LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulation of Turbulent Wake at Mixing of Two Confined Horizontal Flows

Photo from wikipedia

The development of a turbulent mixing layer at mixing of two horizontal water streams with slightly different densities is studied by the means of numerical simulation. The mixing of such… Click to show full abstract

The development of a turbulent mixing layer at mixing of two horizontal water streams with slightly different densities is studied by the means of numerical simulation. The mixing of such flows can be modelled as the flow of two components, where the concentration of one component in the mixing region is described as a passive scalar. The velocity field remains common over the entire computational domain, where the density and viscosity difference due to the concentration mainly affects the turbulent fluctuations in the mixing region. The numerical simulations are performed with the open source code OpenFOAM using two different approaches for turbulence modelling, Reynolds Averaged Navier Stokes equations (RANS) and Large Eddy Simulation (LES). The simulation results are discussed and compared with the benchmark experiment obtained within the frame of OECD/NEA benchmark test. A good agreement with experimental results is obtained in the case of the single liquid experiment. A high discrepancy between the simulated and the experimental velocity fluctuations in the case of mixing of the flows with the slightly different densities and viscosities triggered a systematic investigation of the modelling approaches that helped us to find out and interpret the main reasons for the disagreement.

Keywords: simulation turbulent; wake mixing; simulation; turbulent wake; mixing two; two confined

Journal Title: Science and Technology of Nuclear Installations
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.