Metal-assisted chemical etching (MacEtch) has attracted considerable attention for its ability to fabricate micro- and nanostructures with high aspect ratios and its applications in other microelectromechanical fields. However, few studies… Click to show full abstract
Metal-assisted chemical etching (MacEtch) has attracted considerable attention for its ability to fabricate micro- and nanostructures with high aspect ratios and its applications in other microelectromechanical fields. However, few studies have reported the effect of photoillumination on MacEtch. In this study, gold nanoparticles (GNPs) were deposited on the surface of a Si wafer by using the fluoride-assisted galvanic replacement reaction, and then, the effect of photoillumination on the MacEtch of the Si wafer was investigated. The etched depth increased linearly with etching time from 0–45 min and was considerably larger in the illuminated area than the nonilluminated area. A lag time was observed for the MacEtch of the nonilluminated area. However, no lag time was observed in the illuminated area. The trapping of light by the GNPs on the Si substrate surface during the MacEtch process enhanced the etching efficiency due to localized surface plasmon resonance.
               
Click one of the above tabs to view related content.