LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Node Selection Paradigm for Crowdsourcing Service Based on Region Feature in Crowd Sensing

Photo by cdx2 from unsplash

Crowd sensing is a human-centered sensing model. Through the cooperation of multiple nodes, an entire sensing task is completed. To improve the efficiency of sensing missions, a cost-effective set of… Click to show full abstract

Crowd sensing is a human-centered sensing model. Through the cooperation of multiple nodes, an entire sensing task is completed. To improve the efficiency of sensing missions, a cost-effective set of service nodes, which is easy to fit in performing different tasks, is needed. In this paper, we propose a low-cost service node selection method based on region features, which builds on the relationship between task requirements and geographical locations. The method uses Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to cluster service nodes and calculate the center point of each cluster. The area then is divided into regions according to rules of Voronoi diagrams. Local feature vectors are constructed according to the historical records in each divided region. When a particular sensing task arrives, Analytic Hierarchy Process (AHP) is used to match the feature vector of each region to mission requirements to get a certain number of service nodes satisfying the characteristics. To get a lower cost output, a revised Greedy Algorithm is designed to filter the exported service nodes to get the required low-cost service nodes. Experimental results suggest that the proposed method shows promise in improving service node selection accuracy and the timeliness of finishing tasks.

Keywords: feature; node selection; region; service; service nodes

Journal Title: Mathematical Problems in Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.