LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Dynamic Characteristics of Grease-Lubricated Tapered Roller Bearings

Photo from wikipedia

Tapered roller bearings (TRBs) are applied extensively in the field of high-speed trains, machine tools, automobiles, etc. The motion prediction of main components of TRBs under grease lubrication will be… Click to show full abstract

Tapered roller bearings (TRBs) are applied extensively in the field of high-speed trains, machine tools, automobiles, etc. The motion prediction of main components of TRBs under grease lubrication will be beneficial to the design of bearings and the selection of lubricating grease. In this study, considering the dynamic contact relationship among the cage, rollers, and raceways, a multibody contact dynamic model of the TRB was established based on the geometric interaction models and grease lubrication theories. The impacts of load, grease rheological properties, and temperature on the roller tilt and skew and the bearing slip were simulated by using the fourth-order Runge–Kutta method. The results show that the roller tilt angle in the unloaded zone is obviously larger than that in the loaded zone, while the roller skew angle in the unloaded zone is smaller than that in the loaded zone. As the speed increases, the roller tilt and skew and the bearing slip become more serious. Bearing preload can effectively reduce the bearing slip but will make the roller tilt and skew angle increase. The roller skew angle and the bearing slip decrease with the increase of the grease plastic viscosity. The roller tilt angle increases with the increase of the plastic viscosity. The yield stress of the grease has little effect on motions of the roller and cage. The influence of temperature on the roller and cage motions varies with the type of grease used.

Keywords: roller bearings; grease; roller; roller tilt; bearing slip; tapered roller

Journal Title: Shock and Vibration
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.