LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic Spine Tissue Segmentation from MRI Data Based on Cascade of Boosted Classifiers and Active Appearance Model

Photo from wikipedia

The study introduces a novel method for automatic segmentation of vertebral column tissue from MRI images. The paper describes a method that combines multiple stages of Machine Learning techniques to… Click to show full abstract

The study introduces a novel method for automatic segmentation of vertebral column tissue from MRI images. The paper describes a method that combines multiple stages of Machine Learning techniques to recognize and separate different tissues of the human spine. For the needs of this paper, 50 MRI examinations presenting lumbosacral spine of patients with low back pain were selected. After the initial filtration, automatic vertebrae recognition using Cascade Classifier takes place. Afterwards the main segmentation process using the patch based Active Appearance Model is performed. Obtained results are interpolated using centripetal Catmull–Rom splines. The method was tested on previously unseen vertebrae images segmented manually by 5 physicians. A test validating algorithm convergence per iteration was performed and the Intraclass Correlation Coefficient was calculated. Additionally, the 10-fold cross-validation analysis has been done. Presented method proved to be comparable to the physicians (FF = 90.19 ± 1.01%). Moreover results confirmed a proper algorithm convergence. Automatically segmented area correlated well with manual segmentation for single measurements (r¯=0.8336) and for average measurements (r¯=0.9068) with p = 0.05. The 10-fold cross-validation analysis (FF = 91.37 ± 1.13%) confirmed a good model generalization resulting in practical performance.

Keywords: active appearance; segmentation; mri; appearance model; spine

Journal Title: BioMed Research International
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.