LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sparse Representation Classification Based on Flexible Patches Sampling of Superpixels for Hyperspectral Images

Photo by pavel_kalenik from unsplash

Aiming at solving the difficulty of modeling on spatial coherence, complete feature extraction, and sparse representation in hyperspectral image classification, a joint sparse representation classification method is investigated by flexible… Click to show full abstract

Aiming at solving the difficulty of modeling on spatial coherence, complete feature extraction, and sparse representation in hyperspectral image classification, a joint sparse representation classification method is investigated by flexible patches sampling of superpixels. First, the principal component analysis and total variation diffusion are employed to form the pseudo color image for simplifying superpixels computing with (simple linear iterative clustering) SLIC model. Then, we design a joint sparse recovery model by sampling overcomplete patches of superpixels to estimate joint sparse characteristics of test pixel, which are carried out on the orthogonal matching pursuit (OMP) algorithm. At last, the pixel is labeled according to the minimum distance constraint for final classification based on the joint sparse coefficients and structured dictionary. Experiments conducted on two real hyperspectral datasets show the superiority and effectiveness of the proposed method.

Keywords: classification; flexible patches; sparse representation; representation classification; joint sparse

Journal Title: Mathematical Problems in Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.