A three-dimensional fiber-based frame element accounting for multiaxial stress conditions in reinforced concrete structures is presented. The element formulation relies on the classical Timoshenko beam theory combined with sectional fiber… Click to show full abstract
A three-dimensional fiber-based frame element accounting for multiaxial stress conditions in reinforced concrete structures is presented. The element formulation relies on the classical Timoshenko beam theory combined with sectional fiber discretization and a triaxial constitutive model for reinforced concrete consisting of an orthotropic, smeared crack material model based on the fixed crack assumption. Torsional effects are included through the Saint-Venant theory of torsion, which accounts for out-of-plane displacements perpendicular to the cross section due to warping effects. The formulation was implemented into a force-based beam-column element and verified against monotonic and cyclic tests of reinforced concrete columns in biaxial bending, beams in combined flexure-torsion, and flexure-torsion-shear.
               
Click one of the above tabs to view related content.