LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Microstrip Antenna with HIS Elements and FSS Superstrate for 2.4 GHz Band Applications

Photo from wikipedia

This research presents a microstrip antenna integrated with the high-impedance surface (HIS) elements and the modified frequency selective surface (FSS) superstrate for 2.4 GHz band applications. The electromagnetic band gap (EBG)… Click to show full abstract

This research presents a microstrip antenna integrated with the high-impedance surface (HIS) elements and the modified frequency selective surface (FSS) superstrate for 2.4 GHz band applications. The electromagnetic band gap (EBG) structure was utilized in the fabrication of both the HIS and FSS structures. An FR-4 substrate with 120 mm × 120 mm × 0.8 mm in dimension (W × L × T) and a dielectric constant of 4.3 was used in the antenna design. In the antenna development, the HIS elemental structure was mounted onto the antenna substrate around the radiation patch to suppress the surface wave, and the modified FSS superstrate was suspended 20 mm above the radiating patch to improve the directivity. Simulations were carried out to determine the optimal dimensions of the components and the antenna prototype subsequently fabricated and tested. The simulation and measured results were agreeable. The experimental results revealed that the proposed integrated antenna (i.e., the microstrip antenna with the HIS and FSS structures) outperformed the conventional microstrip antenna with regard to reflection coefficient, the radiation pattern, gain, and radiation efficiency. Specifically, the proposed antenna could achieve the measured antenna gain of 10.14 dBi at 2.45 GHz and the reflection coefficient of less than −10 dB and was operable in the 2.39–2.51 GHz frequency range.

Keywords: band applications; microstrip antenna; ghz band; antenna; superstrate ghz; fss superstrate

Journal Title: International Journal of Antennas and Propagation
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.