LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of Water Waves Using Momentum Source Wave-Maker Applied to a RANS Solver

Photo by bagasvg from unsplash

Nowadays, as the development of Computational Fluid Dynamics (CFD) and the numerical wave tank (NWT) has advanced, numerical analysis has become increasingly useful and powerful for the ship designing and… Click to show full abstract

Nowadays, as the development of Computational Fluid Dynamics (CFD) and the numerical wave tank (NWT) has advanced, numerical analysis has become increasingly useful and powerful for the ship designing and ship hydrodynamics. In this study, a momentum source wave-maker and an analytical relaxation wave absorber were embedded into 2D RANS equation model with RSM turbulence closure scheme to establish the NWT for ship designing and hydrodynamics. The VOF (volume-of-fluid) method was applied to accurately capture the water free surface. The body force-weighted scheme is chosen for pressure interpolation and the second order upwind scheme for discretization of the momentum equation. In order to calculate convection and diffusion fluxes through the control volume faces, PISO algorithm is adopted for pressure-velocity coupling. The momentum source function for wave generation and the analytical relaxation function for wave absorption were deduced for constructing the NWT (numerical wave tank). The proposed NWT was then validated by the laboratory measurements of Umeyama and the analytical solution, indicating that the constructed NWT is effective and accurate.

Keywords: wave maker; wave; momentum source; source wave; momentum

Journal Title: Mathematical Problems in Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.