In order to explore a new method to detect the freshness of lotus seeds, the lotus seeds stored for 0, 1, 2, and 3 years, respectively, were used as experimental materials… Click to show full abstract
In order to explore a new method to detect the freshness of lotus seeds, the lotus seeds stored for 0, 1, 2, and 3 years, respectively, were used as experimental materials and analyzed by DAPCI-MS (desorption atmospheric pressure chemical ionization-mass spectrometry). The obtained data were processed by principal component analysis (PCA) and backpropagation artificial neural networks (BP-ANNs). The result showed that DAPCI-MS could obtain abundant chemical material information from the slice surface of lotus seeds. The BP-ANNs model could be applied not only to distinguish fresh and aged lotus seeds with the testing set accuracies of 95.0% and 91.7%, respectively, but also to classify lotus seeds with different storage times with the testing set accuracies of 90.0%, 85.0%, 85.0%, and 90.0%, respectively. The paper developed a fast, convenient, and accurate method for the freshness detection of lotus seed and would provide reliable reference value for rapid authentication of food freshness by the rapid mass spectrometry technique.
               
Click one of the above tabs to view related content.