This article investigates a novel fuzzy-approximation-based nonaffine control strategy for a flexible air-breathing hypersonic vehicle (FHV). Firstly, the nonaffine models are decomposed into an altitude subsystem and a velocity subsystem,… Click to show full abstract
This article investigates a novel fuzzy-approximation-based nonaffine control strategy for a flexible air-breathing hypersonic vehicle (FHV). Firstly, the nonaffine models are decomposed into an altitude subsystem and a velocity subsystem, and the nonaffine dynamics of the subsystems are processed by using low-pass filters. For the unknown functions and uncertainties in each subsystem, fuzzy approximators are used to approximate the total uncertainties, and norm estimation approach is introduced to reduce the computational complexity of the algorithm. Aiming at the saturation problem of actuator, a saturation auxiliary system is designed to transform the original control problem with input constraints into a new control problem without input constraints. Finally, the superiority of the proposed method is verified by simulation.
               
Click one of the above tabs to view related content.