Decisions strongly rely on information, so the information must be reliable, yet most of the real-world information is imprecise and uncertain. The reliability of the information about decision analysis should… Click to show full abstract
Decisions strongly rely on information, so the information must be reliable, yet most of the real-world information is imprecise and uncertain. The reliability of the information about decision analysis should be measured. Z-number, which incorporates a restraint of evaluation on investigated objects and the corresponding degree of confidence, is considered as a powerful tool to characterize this information. In this paper, we develop a novel approach based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method and the power aggregation operators for solving the multiple criteria group decision making (MCGDM) problem where the weight information for decision makers (DMs) and criteria is incomplete. In the MCGDM, the evaluation information made by DMs is represented in the form of linguistic terms and the following calculation is performed using Z-numbers. First, we establish an optimization model based on similarity measure to determine the weights of DMs and a linear programming model with partial weight information provided by DMs based on distance measure to determine the weights of criteria. Subsequently, decision matrices from all the DMs are aggregated into a comprehensive evaluation matrix utilizing the proposed ZWAPA operator or ZWGPA operator. Then, those considered alternatives are ranked in accordance with TOPSIS idea and the feature of Z-evaluation. Finally, a practical example about supplier selection is given to demonstrate the detailed implementation process of the proposed approach, and the feasibility and validity of the approach are verified by comparisons with some existing approaches.
               
Click one of the above tabs to view related content.