LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transition Metal Complexes of Mixed Bioligands: Synthesis, Characterization, DFT Modeling, and Applications

Photo by viazavier from unsplash

Divalent transition metal complexes [MGlu-Arg (H2O)]H2O and [MGlu-Arg (H2O)]H2O, where M = Co, Ni, Cu, and Zn, Glu = glutamic acid, and Arg = L-arginine, are prepared and characterized using different techniques. DFT and TD-DFT modelling… Click to show full abstract

Divalent transition metal complexes [MGlu-Arg (H2O)]H2O and [MGlu-Arg (H2O)]H2O, where M = Co, Ni, Cu, and Zn, Glu = glutamic acid, and Arg = L-arginine, are prepared and characterized using different techniques. DFT and TD-DFT modelling validated and interpreted some experimental results. Weight loss technique reveals efficient corrosion inhibition action of these complexes towards aluminum metal at different temperatures. Our results point to corrosion inhibition through chemical adsorption on the aluminum surface. Additionally, a facile calcination of Co and Cu complexes at 550°C yields nanosized oxides of Co3O4, CoO, and CuO crystalline phases. The complexes show remarkable biological activities towards pathogenic bacteria and fungi. Moreover, in vitro anticancer activity evaluation of these complexes is achieved against hepatocellular carcinoma (HepG-2). The results are correlated with molecular descriptors such as chemical potential and hardness obtained from the frontier orbitals.

Keywords: h2o; metal complexes; transition metal; complexes mixed

Journal Title: Journal of Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.