The Davey-Stewartson Equation (DSE) is an equation system that reflects the evolution in finite depth of soft nonlinear packets of water waves that move in one direction but in which… Click to show full abstract
The Davey-Stewartson Equation (DSE) is an equation system that reflects the evolution in finite depth of soft nonlinear packets of water waves that move in one direction but in which the waves’ amplitude is modulated in spatial directions. This paper uses the Generalized Elliptic Equation Rational Expansion (GEERE) technique to extract fresh exact solutions for the DSE. As a consequence, solutions with parameters of trigonometric, hyperbolic, and rational function are achieved. To display the physical characteristics of this model, the solutions obtained are graphically displayed. Modulation instability assessment of the outcomes acquired is also discussed and it demonstrates that all the solutions built are accurate and stable.
               
Click one of the above tabs to view related content.