LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Developing a Novel and Convenient Model for Investigating Sweat Gland Morphogenesis from Epidermal Stem Cells

Photo from wikipedia

Sweat glands developed from the embryonic epidermis. To elucidate the underlying mechanisms of morphogenesis, a reliable in vitro test system for bioactive screening must be developed. Here, we described a… Click to show full abstract

Sweat glands developed from the embryonic epidermis. To elucidate the underlying mechanisms of morphogenesis, a reliable in vitro test system for bioactive screening must be developed. Here, we described a novel and convenient model by coculturing embryonic tissue and epidermal stem cells (ESCs) using Transwell insert for evaluating the effects of soluble morphogens on sweat gland morphogenesis in vitro. Using this coculture system, morphological alteration, histological features, and specific markers were observed. Initial experiments revealed that ESCs cocultured with embryonic paw pad (EPP) tissue demonstrated glandular structure and cytokeratin 8 (K8) and cytokeratin 18 (K18) positive, while ESCs cocultured with embryonic dorsal skin demonstrated “sea snail” structure and K8, K18 negative. Moreover, bone morphogenetic protein 4 (BMP4) and epidermal growth factor (EGF) concentrations were detected in the medium of the EPP group. BMP receptor inhibitor could effectively block the ESC differentiation to sweat glands, while EGF receptor blocker did not show the effect. Our results showed clear benefits of this novel and convenient model in terms of in vitro-in vivo correlation. It was an appropriate alternative for screening of potential bioactives regulating the sweat gland morphogenesis mechanism.

Keywords: sweat; convenient model; sweat gland; novel convenient; morphogenesis; stem cells

Journal Title: Stem Cells International
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.