To understand in-depth material properties, manufacturing, and conservation in cultural heritage artefacts, there is a strong need for advanced characterization tools that enable analysis down to the nanometric scale. Transmission… Click to show full abstract
To understand in-depth material properties, manufacturing, and conservation in cultural heritage artefacts, there is a strong need for advanced characterization tools that enable analysis down to the nanometric scale. Transmission electron microscopy (TEM) and electron diffraction (ED) techniques, like 3D precession electron diffraction tomography and ASTAR phase/orientation mapping, are proposed to study cultural heritage materials at nanoscale. In this work, we show how electron crystallography in TEM helps to determine precise structural information and phase/orientation distribution of various pigments in cultural heritage materials from various historical periods like Greek amphorisks, Roman glass tesserae, and pre-Hispanic Maya mural paintings. Such TEM-based methods can be an alternative to synchrotron techniques and can allow distinguishing accurately different crystalline phases even in cases of identical or very close chemical compositions at the nanometric scale.
               
Click one of the above tabs to view related content.